Dental and Medical Problems

Dent. Med. Probl.
Index Copernicus (ICV 2019) – 118.76
MNiSW – 20
Average rejection rate (2020) – 88.71%
Average waiting time at editors (to acceptance) – 17.93 days
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

Ahead of print

doi: 10.17219/dmp/131795

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Demographic, clinical, laboratory, and genetic risk factors associated with COVID-19 severity in adults: A narrative review

Helena Martynowicz1,A,B,C,D,F, Anna Jodkowska1,B,C,D,E, Rafał Poręba1,C,E,F, Grzegorz Mazur1,C,E,F, Mieszko Więckiewicz2,A,E,F

1 Department and Clinic of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland

2 Department and Division of Experimental Dentistry, Wroclaw Medical University, Poland


Since the first report on it in December 2019 in Wuhan, China, the novel coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world. Due to the lack of effective therapy available for COVID-19 patients, the identification of risk factors for the severe course of the disease is a matter of urgency. Therefore, the aim of this review was to report on evidence-based risk factors affecting the severity and prognosis of COVID-19. We searched the PubMed database for current literature to identify relevant publications concerning risk factors for COVID-19 severity. Demographic and social factors (age, gender, race, in-center communities/nursing homes), clinical factors (smoking, hypertension, obesity, diabetes, chronic lung diseases, cardiovascular diseases – CVD, chronic kidney disease – CKD, malignancies, dementia, cardiomyopathies, immunocompromised state), laboratory markers (C-reactive protein – CRP, leukocytosis, ferritin, interleukin (IL)-6, D-dimer, lactate dehydrogenase – LDH, aspartate aminotransferase – AST, procalcitonin, creatinine, lymphopenia, IL-2, IL-7, IL-10, granulocyte colony-stimulating factor – G-CSF, also known as colony-stimulating factor 3 – CSF 3, interferon gamma-inducible protein-10 – IP-10, monocyte chemoattractant protein-1 – MCP-1, macrophage inflammatory protein-1alpha – MIP1A, tumor necrosis factor alpha – TNF-α), and genetic factors related to both the virus and the host were discussed. The identification of the potential risk factors affecting the severity and prognosis of COVID-19 may provide a chance for earlier and more effective management of COVID-19.

Key words

risk factors, severity, demographics, COVID-19, SARS-CoV-2

References (101)

  1. WHO Coronavirus Disease (COVID-19) Dashboard. Updated November 19, 2020, 5:13 p.m. CET.
  2. Giovanetti M, Benvenuto D, Angeletti S, Ciccozzi M. The first two cases of 2019-nCoV in Italy: Where they come from? J Med Virol. 2020;92(5):518–521. doi:10.1002/jmv.25699
  3. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. doi:10.1016/j.meegid.2020.104212
  4. Benvenuto D, Giovanetti M, Salemi M, et al. The global spread of 2019-nCoV: A molecular evolutionary analysis. Pathog Glob Health. 2020;114(2):64–67. doi:10.1080/20477724.2020.1725339
  5. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395(10223):514–523. doi:10.1016/S0140-6736(20)30154-9
  6. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406–1407. doi:10.1001/jama.2020.2565
  7. Yu P, Zhu J, Zhang Z, Han Y. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. J Infect Dis. 2020. doi:10.1093/infdis/jiaa077
  8. Liu YC, Liao CH, Chang CF, Chou CC, Lin YR. A locally transmitted case of SARS-CoV-2 infection in Taiwan. N Engl J Med. 2020;382(11):1070–1072. doi:10.1056/NEJMc2001573
  9. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032
  10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
  11. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell res­ponses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–1501.e15. doi:10.1016/j.cell.2020.05.015
  12. Kreer C, Zehner M, Weber T, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell. 2020;182(4):843–854.e12. doi:10.1016/j.cell.2020.06.044
  13. Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: The knowns and unknowns. Nat Rev Immunol. 2020;20(8):457–458. doi:10.1038/s41577-020-0389-z
  14. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting charac­teristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.6775
  15. Jesenak M, Brndiarova M, Urbancikova I, et al. Immune para­meters and COVID-19 infection – associations with clinical seve­rity and disease prognosis. Front Cell Infect Microbiol. 2020;10:364. doi:10.3389/fcimb.2020.00364
  16. Fauci AS, Lane HC, Redfield RR. Covid-19 – navigating the uncharted. New Engl J Med. 2020;382(13):1268–1269. doi:10.1056/NEJMe2002387
  17. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–1581. doi:10.1001/jama.2020.5394
  18. Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–772. doi:10.1016/j.cmi.2020.04.012
  19. Hong D, Long L, Wang AY, et al. Kidney manifestations of mild, mode­rate and severe coronavirus disease 2019: A retrospective cohort study. Clin Kidney J. 2020;13(3):340–346. doi:10.1093/ckj/sfaa083
  20. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection. A narrative review. Ann Intern Med. 2020;173(5):362–367. doi:10.7326/M20-3012
  21. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical charac­teristics of 99 cases of 2019-novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  22. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4. doi:10.1186/s40779-020-0233-6
  23. Duan J, Wang X, Chi J, et al. Correlation between the variables collected at admission and progression to severe cases during hospitalization among patients with COVID-19 in Chongqing. J Med Virol. 2020;92(11):2616–2622. doi:10.1002/jmv.26082
  24. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi:10.1172/JCI137244
  25. Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta. 2020;509:220–223. doi:10.1016/j.cca.2020.06.026
  26. Bhat R, Hamid A, Kunin JR, et al. Chest imaging in patients hospitalized with COVID-19 infection – a case series. Curr Probl Diagn Radiol. 2020;49(4):294–301. doi:10.1067/j.cpradiol.2020.04.001
  27. Salamanna F, Maglio M, Landini MP, Fini M. Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19). Platelets. 2020;31(5):627–632. doi:10.1080/09537104.2020.1762852
  28. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020;323(22):2329–2330. doi:10.1001/jama.2020.6825
  29. Kalil AC. Treating COVID-19 – off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA. 2020;323(19):1897–1898. doi:10.1001/jama.2020.4742
  30. FitzGerald GA. Misguided drug advice for COVID-19. Science. 2020;367(6485):1434. doi:10.1126/science.abb8034
  31. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020;80(6):e14–e18. doi:10.1016/j.jinf.2020.03.005
  32. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–1199. doi:10.1002/oby.22831
  33. Anderson MR, Geleris J, Anderson DR, et al. Body mass index and risk for intubation or death in SARS-CoV-2 infection. A retrospective cohort study. Ann Intern Med. 2020. doi:10.7326/M20-3214
  34. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus disease (COVID-19) in China [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145–151. doi:10.3760/cma.j.issn.0254-6450.2020.02.003
  35. Corbett RW, Blakey S, Nitsch D, et al.; West London Renal and Transplant Centre. Epidemiology of COVID-19 in an urban dialysis center. J Am Soc Nephrol. 2020;31(8):1815–1823. doi:10.1681/ASN.2020040534
  36. Bigelow BF, Tang O, Toci GR, et al. Transmission of SARS-CoV-2 involving residents receiving dialysis in a nursing home – Maryland, April 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1089–1094. doi:10.15585/mmwr.mm6932e4
  37. Smith AA, Fridling J, Ibhrahim D, Porter PS Jr. Identifying patients at greatest risk of mortality due to COVID-19: A New England perspective. West J Emerg Med. 2020;21(4):785–789. doi:10.5811/westjem.2020.6.47957
  38. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur J Clin Investig. 2020;50(10):13362. doi:10.1111/eci.13362
  39. Butt N, Arshid A, Ahmad SA, Khalid N, Kayani WT. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020. doi:10.1016/j.ajem.2020.07.032
  40. Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: A systema­tic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e35. PMCID:PMC7096724
  41. Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. 2020;99:47–56. doi:10.1016/j.ijid.2020.07.029
  42. Atkins JL, Masoli JAH, Delgado J, et al. Preexisting comorbidities predicting COVID-19 and mortality in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2224–2230. doi:10.1093/gerona/glaa183
  43. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associ­ated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi:10.1038/s41586-020-2521-4
  44. Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet. 2020;395(10241):1907–1918. doi:10.1016/S0140-6736(20)31187-9
  45. van Dam PA, Huizing M, Mestach G, et al. SARS-CoV-2 and cancer: Are they really partners in crime? Cancer Treat Rev. 2020;89:102068. doi:10.1016/j.ctrv.2020.102068
  46. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–118. doi:10.1016/j.jaci.2020.04.006
  47. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03.017
  48. Shao S, Zhao Z, Wang F, et al. Risk factors associated with disease aggravation among 126 hospitalized patients with COVID-19 in different places in China: A retrospective observational study. Medicine (Baltimore). 2020;99(45):e22971. doi:10.1097/MD.0000000000022971
  49. Xiang YT, Yang Y, Li W, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry. 2020;7(3):228–229. doi:10.1016/S2215-0366(20)30046-8
  50. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: Opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–1386. doi:10.1016/S0140-6736(19)31785-4
  51. Skloot GS. The effects of aging on lung structure and function. Clin Geriatr Med. 2017;33(4):447–457. doi:10.1016/j.cger.2017.06.001
  52. Yoon HJ, Cho SW, Ahn BW, Yang SY. Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech Ageing Dev. 2010;131(2):119–123. doi:10.1016/j.mad.2009.12.010
  53. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for morta­lity of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
  54. Docherty AB, Harrison EM, Green CA, et al. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO clinical characterisation protocol. Accessed on May 6, 2020.
  55. Radwan NM, Mahmoud NE, Alfaifi AH, Alabdulkareem KI. Comorbidities and severity of coronavirus disease 2019 patients. Saudi Med J. 2020;41(11):1165–1174. doi:10.15537/smj.2020.11.25454
  56. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ. 2020;369:m1548. doi:10.1136/bmj.m1548
  57. Institute for Fiscal Studies (IFS). Are some ethnic groups more vulnerable to COVID-19 than others? Accessed on December 10, 2020.
  58. Lièvre A, Turpin A, Ray-Coquard I; GCO-002 CACOVID-19 collabo­rators/investigators. Risk factors for Coronavirus Disease 2019 (COVID-19) severity and mortality among solid cancer patients and impact of the disease on anticancer treatment: A French nationwide cohort study (GCO-002 CACOVID-19). Eur J Cancer. 2020;141:62–81. doi:10.1016/j.ejca.2020.09.035
  59. Centers for Disease Control and Prevention (CDC): COVID-19. People with certain medical conditions. Accessed on April 15, 2020.
  60. Bansal R, Gubbi S, Muniyappa R. Metabolic syndrome and COVID 19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinology. 2020;161(10):bqaa112. doi:10.1210/endocr/bqaa112
  61. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi:10.1016/S2213-2600(20)30079-5
  62. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ. 2020;368:m606. doi:10.1136/bmj.m606
  63. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368:m1091. doi:10.1136/bmj.m1091
  64. Matsushita K, Ding N, Kou M, et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-analysis. Glob Heart. 2020;15(1):64. doi:10.5334/gh.814
  65. Meng J, Xiao G, Zhang J, et al. Renin-angiotensin system inhibi­tors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020;9(1):757–760. doi:10.1080/22221751.2020.1746200
  66. Wendel Garcia PD, Fumeaux T, Guerci P, et al.; RISC-19-ICU Investi­gators. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinical Medicine. 2020;25:100449. doi:10.1016/j.eclinm.2020.100449
  67. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease seve­rity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: Retrospective cohort study. BMJ. 2020;369:m1443. doi:10.1136/bmj.m1443
  68. Kavsak PA, De Wit K, Worster A. Emerging key laboratory tests for patients with COVID-19. Clin Biochem. 2020;81:13–14. doi:10.1016/j.clinbiochem.2020.04.009
  69. Oudkerk M, Kuijpers D, Oudkerk SF, van Beek E Jr. The vascular nature of COVID-19. Br J Radiol. 2020:93(1113):20200718. doi:10.1259/bjr.20200718
  70. Gupta N, Ish P, Kumar R, et al.; the Safdarjung Hospital Covid Working Group. Evaluation of the clinical profile, laboratory parameters and outcome of two hundred COVID-19 patients from a tertiary centre in India. Monaldi Arch Chest Dis. 2020;90(4). doi:10.4081/monaldi.2020.1507
  71. Liu L, Zheng Y, Cai L, et al. Neutrophil-to-lymphocyte ratio, a criti­cal predictor for assessment of disease severity in patients with COVID-19. Int J Lab Hematol. 2020. doi:10.1111/ijlh.13374
  72. Mudatsir M, Fajar JK, Wulandari L, et al. Predictors of COVID-19 severity: A systematic review and meta-analysis. F1000Res. 2020;9:1107. doi:10.12688/f1000research.26186.2
  73. Vidali S, Morosetti D, Cossu E, et al. D-dimer as an indicator of prognosis in SARS-CoV-2 infection: A systematic review. ERJ Open Res. 2020;6(2):00260–2020. doi:10.1183/23120541.00260-2020
  74. Chen Z, Zhang F, Hu W, et al. Laboratory markers associated with COVID-19 progression in patients with or without comorbidity: A retrospective study. J Clin Lab Anal. 2021;35(1):e23644. doi:10.1002/jcla.23644
  75. Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. doi:10.1016/S2213-8587(20)30272-2
  76. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020. doi:10.1002/dmrr.3319
  77. Drucker DJ. Coronavirus infections and type 2 diabetes – shared pathways with therapeutic implications. Endocr Rev. 2020;41(3):bnaa011. doi:10.1210/endrev/bnaa011
  78. Chen Y, Wang J, Liu C, et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020;26:97. doi:10.1186/s10020-020-00230-x
  79. Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019;16(1):69. doi:10.1186/s12985-019-1182-0
  80. Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–328. doi:10.1016/j.chom.2020.02.001
  81. Wassenaar TM, Zou Y. 2019_nCoV/SARS-CoV-2: Rapid classification of betacoronaviruses and identification of Traditional Chinese Medicine as potential origin of zoonotic coronaviruses. Lett Appl Microbiol. 2020;70(5):342–348. doi:10.1111/lam.13285
  82. Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Rev. 2020. doi:10.1093/nsr/nwaa036
  83. Al Khatib HA, Benslimane FM, Elbashir IE, et al. Within-host diversity of SARS-CoV-2 in COVID-19 patients with variable disease severities. Front Cell Infect Microbiol. 2020;10:575613. doi:10.3389/fcimb.2020.575613
  84. Shikov AE, Barbitoff YA, Glotov AS, et al. Analysis of the spectrum of ACE2 variation suggests a possible influence of rare and common variants on susceptibility to COVID-19 and severity of outcome. Front Genet. 2020;11:551220. doi:10.3389/fgene.2020.551220
  85. Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97–109. doi:10.1016/j.antiviral.2014.06.013
  86. Majumdar P, Niyogi S. ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection. Epidemiol Infect. 2020;148:e262. doi:10.1017/S0950268820002599
  87. Ellinghaus D, Degenhardt F, Bujanda L, et al.; Severe Covid-19 GWAS Group. Genomewide Association study of severe COVID-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–1534. doi:10.1056/NEJMoa2020283
  88. Zhao J, Yang Y, Huang H, et al. Relationship between the ABO blood group and the COVID-19 susceptibility. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1150
  89. Zietz M, Zucker J, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death. medRxiv. 2020. doi:10.1101/2020.04.08.20058073
  90. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. doi:10.1056/NEJMsr2005760
  91. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clini­cally proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi:10.1016/j.cell.2020.02.052
  92. Muus C, Luecken MD, Eraslan G, et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020. doi:10.1101/2020.04.19.049254
  93. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithe­lial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e1019. doi:10.1016/j.cell.2020.04.035
  94. Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of genetic variants and gene expression in the susceptibi­lity and severity of COVID-19. Ann Lab Med. 2021;41(2):129–138. doi:10.3343/alm.2021.41.2.129
  95. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. doi:10.1186/s12916-020-01673-z
  96. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020. doi:10.1101/2020.01.26.919985
  97. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231–2232. doi:10.1093/gerona/glaa131
  98. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94(13):e00510–e00520. doi:10.1128/JVI.00510-20
  99. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi:10.1126/science.abd4570
  100. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi:10.1126/science.abd4585
  101. Kosuge M, Furusawa-Nishii E, Ito K, Saito Y, Ogasawara K. Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses. Sci Rep. 2020;10(1):17766. doi:10.1038/s41598-020-74843-x