Dental and Medical Problems

Dent. Med. Probl.
Index Copernicus (ICV 2019) – 118.76
MNiSW – 20
Average rejection rate (2020) – 88.71%
Average waiting time at editors (to acceptance) – 17.93 days
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

Ahead of print

doi: 10.17219/dmp/131795

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Demographic, clinical, laboratory, and genetic risk factors associated with COVID-19 severity in adults: A narrative review

Helena Martynowicz1,A,B,C,D,F, Anna Jodkowska1,B,C,D,E, Rafał Poręba1,C,E,F, Grzegorz Mazur1,C,E,F, Mieszko Więckiewicz2,A,E,F

1 Department and Clinic of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland

2 Department and Division of Experimental Dentistry, Wroclaw Medical University, Poland

Abstract

Since the first report on it in December 2019 in Wuhan, China, the novel coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world. Due to the lack of effective therapy available for COVID-19 patients, the identification of risk factors for the severe course of the disease is a matter of urgency. Therefore, the aim of this review was to report on evidence-based risk factors affecting the severity and prognosis of COVID-19. We searched the PubMed database for current literature to identify relevant publications concerning risk factors for COVID-19 severity. Demographic and social factors (age, gender, race, in-center communities/nursing homes), clinical factors (smoking, hypertension, obesity, diabetes, chronic lung diseases, cardiovascular diseases – CVD, chronic kidney disease – CKD, malignancies, dementia, cardiomyopathies, immunocompromised state), laboratory markers (C-reactive protein – CRP, leukocytosis, ferritin, interleukin (IL)-6, D-dimer, lactate dehydrogenase – LDH, aspartate aminotransferase – AST, procalcitonin, creatinine, lymphopenia, IL-2, IL-7, IL-10, granulocyte colony-stimulating factor – G-CSF, also known as colony-stimulating factor 3 – CSF 3, interferon gamma-inducible protein-10 – IP-10, monocyte chemoattractant protein-1 – MCP-1, macrophage inflammatory protein-1alpha – MIP1A, tumor necrosis factor alpha – TNF-α), and genetic factors related to both the virus and the host were discussed. The identification of the potential risk factors affecting the severity and prognosis of COVID-19 may provide a chance for earlier and more effective management of COVID-19.

Key words

risk factors, severity, demographics, COVID-19, SARS-CoV-2

References (101)

  1. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/. Updated November 19, 2020, 5:13 p.m. CET.
  2. Giovanetti M, Benvenuto D, Angeletti S, Ciccozzi M. The first two cases of 2019-nCoV in Italy: Where they come from? J Med Virol. 2020;92(5):518–521. doi:10.1002/jmv.25699
  3. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. doi:10.1016/j.meegid.2020.104212
  4. Benvenuto D, Giovanetti M, Salemi M, et al. The global spread of 2019-nCoV: A molecular evolutionary analysis. Pathog Glob Health. 2020;114(2):64–67. doi:10.1080/20477724.2020.1725339
  5. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395(10223):514–523. doi:10.1016/S0140-6736(20)30154-9
  6. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406–1407. doi:10.1001/jama.2020.2565
  7. Yu P, Zhu J, Zhang Z, Han Y. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. J Infect Dis. 2020. doi:10.1093/infdis/jiaa077
  8. Liu YC, Liao CH, Chang CF, Chou CC, Lin YR. A locally transmitted case of SARS-CoV-2 infection in Taiwan. N Engl J Med. 2020;382(11):1070–1072. doi:10.1056/NEJMc2001573
  9. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032
  10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
  11. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell res­ponses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–1501.e15. doi:10.1016/j.cell.2020.05.015
  12. Kreer C, Zehner M, Weber T, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell. 2020;182(4):843–854.e12. doi:10.1016/j.cell.2020.06.044
  13. Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: The knowns and unknowns. Nat Rev Immunol. 2020;20(8):457–458. doi:10.1038/s41577-020-0389-z
  14. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting charac­teristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.6775
  15. Jesenak M, Brndiarova M, Urbancikova I, et al. Immune para­meters and COVID-19 infection – associations with clinical seve­rity and disease prognosis. Front Cell Infect Microbiol. 2020;10:364. doi:10.3389/fcimb.2020.00364
  16. Fauci AS, Lane HC, Redfield RR. Covid-19 – navigating the uncharted. New Engl J Med. 2020;382(13):1268–1269. doi:10.1056/NEJMe2002387
  17. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–1581. doi:10.1001/jama.2020.5394
  18. Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–772. doi:10.1016/j.cmi.2020.04.012
  19. Hong D, Long L, Wang AY, et al. Kidney manifestations of mild, mode­rate and severe coronavirus disease 2019: A retrospective cohort study. Clin Kidney J. 2020;13(3):340–346. doi:10.1093/ckj/sfaa083
  20. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection. A narrative review. Ann Intern Med. 2020;173(5):362–367. doi:10.7326/M20-3012
  21. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical charac­teristics of 99 cases of 2019-novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  22. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4. doi:10.1186/s40779-020-0233-6
  23. Duan J, Wang X, Chi J, et al. Correlation between the variables collected at admission and progression to severe cases during hospitalization among patients with COVID-19 in Chongqing. J Med Virol. 2020;92(11):2616–2622. doi:10.1002/jmv.26082
  24. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi:10.1172/JCI137244
  25. Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta. 2020;509:220–223. doi:10.1016/j.cca.2020.06.026
  26. Bhat R, Hamid A, Kunin JR, et al. Chest imaging in patients hospitalized with COVID-19 infection – a case series. Curr Probl Diagn Radiol. 2020;49(4):294–301. doi:10.1067/j.cpradiol.2020.04.001
  27. Salamanna F, Maglio M, Landini MP, Fini M. Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19). Platelets. 2020;31(5):627–632. doi:10.1080/09537104.2020.1762852
  28. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020;323(22):2329–2330. doi:10.1001/jama.2020.6825
  29. Kalil AC. Treating COVID-19 – off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA. 2020;323(19):1897–1898. doi:10.1001/jama.2020.4742
  30. FitzGerald GA. Misguided drug advice for COVID-19. Science. 2020;367(6485):1434. doi:10.1126/science.abb8034
  31. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020;80(6):e14–e18. doi:10.1016/j.jinf.2020.03.005
  32. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–1199. doi:10.1002/oby.22831
  33. Anderson MR, Geleris J, Anderson DR, et al. Body mass index and risk for intubation or death in SARS-CoV-2 infection. A retrospective cohort study. Ann Intern Med. 2020. doi:10.7326/M20-3214
  34. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus disease (COVID-19) in China [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145–151. doi:10.3760/cma.j.issn.0254-6450.2020.02.003
  35. Corbett RW, Blakey S, Nitsch D, et al.; West London Renal and Transplant Centre. Epidemiology of COVID-19 in an urban dialysis center. J Am Soc Nephrol. 2020;31(8):1815–1823. doi:10.1681/ASN.2020040534
  36. Bigelow BF, Tang O, Toci GR, et al. Transmission of SARS-CoV-2 involving residents receiving dialysis in a nursing home – Maryland, April 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1089–1094. doi:10.15585/mmwr.mm6932e4
  37. Smith AA, Fridling J, Ibhrahim D, Porter PS Jr. Identifying patients at greatest risk of mortality due to COVID-19: A New England perspective. West J Emerg Med. 2020;21(4):785–789. doi:10.5811/westjem.2020.6.47957
  38. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur J Clin Investig. 2020;50(10):13362. doi:10.1111/eci.13362
  39. Butt N, Arshid A, Ahmad SA, Khalid N, Kayani WT. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020. doi:10.1016/j.ajem.2020.07.032
  40. Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: A systema­tic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e35. PMCID:PMC7096724
  41. Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. 2020;99:47–56. doi:10.1016/j.ijid.2020.07.029
  42. Atkins JL, Masoli JAH, Delgado J, et al. Preexisting comorbidities predicting COVID-19 and mortality in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2224–2230. doi:10.1093/gerona/glaa183
  43. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associ­ated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi:10.1038/s41586-020-2521-4
  44. Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet. 2020;395(10241):1907–1918. doi:10.1016/S0140-6736(20)31187-9
  45. van Dam PA, Huizing M, Mestach G, et al. SARS-CoV-2 and cancer: Are they really partners in crime? Cancer Treat Rev. 2020;89:102068. doi:10.1016/j.ctrv.2020.102068
  46. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–118. doi:10.1016/j.jaci.2020.04.006
  47. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03.017
  48. Shao S, Zhao Z, Wang F, et al. Risk factors associated with disease aggravation among 126 hospitalized patients with COVID-19 in different places in China: A retrospective observational study. Medicine (Baltimore). 2020;99(45):e22971. doi:10.1097/MD.0000000000022971
  49. Xiang YT, Yang Y, Li W, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry. 2020;7(3):228–229. doi:10.1016/S2215-0366(20)30046-8
  50. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: Opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–1386. doi:10.1016/S0140-6736(19)31785-4
  51. Skloot GS. The effects of aging on lung structure and function. Clin Geriatr Med. 2017;33(4):447–457. doi:10.1016/j.cger.2017.06.001
  52. Yoon HJ, Cho SW, Ahn BW, Yang SY. Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech Ageing Dev. 2010;131(2):119–123. doi:10.1016/j.mad.2009.12.010
  53. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for morta­lity of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
  54. Docherty AB, Harrison EM, Green CA, et al. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO clinical characterisation protocol. https://www.medrxiv.org/content/10.1101/2020.04.23.20076042v1. Accessed on May 6, 2020.
  55. Radwan NM, Mahmoud NE, Alfaifi AH, Alabdulkareem KI. Comorbidities and severity of coronavirus disease 2019 patients. Saudi Med J. 2020;41(11):1165–1174. doi:10.15537/smj.2020.11.25454
  56. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ. 2020;369:m1548. doi:10.1136/bmj.m1548
  57. Institute for Fiscal Studies (IFS). Are some ethnic groups more vulnerable to COVID-19 than others? https://www.ifs.org.uk/inequality/chapter/are-some-ethnic-groups-more-vulnerable-to-covid-19-than-others/. Accessed on December 10, 2020.
  58. Lièvre A, Turpin A, Ray-Coquard I; GCO-002 CACOVID-19 collabo­rators/investigators. Risk factors for Coronavirus Disease 2019 (COVID-19) severity and mortality among solid cancer patients and impact of the disease on anticancer treatment: A French nationwide cohort study (GCO-002 CACOVID-19). Eur J Cancer. 2020;141:62–81. doi:10.1016/j.ejca.2020.09.035
  59. Centers for Disease Control and Prevention (CDC): COVID-19. People with certain medical conditions. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html. Accessed on April 15, 2020.
  60. Bansal R, Gubbi S, Muniyappa R. Metabolic syndrome and COVID 19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinology. 2020;161(10):bqaa112. doi:10.1210/endocr/bqaa112
  61. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi:10.1016/S2213-2600(20)30079-5
  62. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ. 2020;368:m606. doi:10.1136/bmj.m606
  63. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368:m1091. doi:10.1136/bmj.m1091
  64. Matsushita K, Ding N, Kou M, et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-analysis. Glob Heart. 2020;15(1):64. doi:10.5334/gh.814
  65. Meng J, Xiao G, Zhang J, et al. Renin-angiotensin system inhibi­tors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020;9(1):757–760. doi:10.1080/22221751.2020.1746200
  66. Wendel Garcia PD, Fumeaux T, Guerci P, et al.; RISC-19-ICU Investi­gators. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinical Medicine. 2020;25:100449. doi:10.1016/j.eclinm.2020.100449
  67. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease seve­rity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: Retrospective cohort study. BMJ. 2020;369:m1443. doi:10.1136/bmj.m1443
  68. Kavsak PA, De Wit K, Worster A. Emerging key laboratory tests for patients with COVID-19. Clin Biochem. 2020;81:13–14. doi:10.1016/j.clinbiochem.2020.04.009
  69. Oudkerk M, Kuijpers D, Oudkerk SF, van Beek E Jr. The vascular nature of COVID-19. Br J Radiol. 2020:93(1113):20200718. doi:10.1259/bjr.20200718
  70. Gupta N, Ish P, Kumar R, et al.; the Safdarjung Hospital Covid Working Group. Evaluation of the clinical profile, laboratory parameters and outcome of two hundred COVID-19 patients from a tertiary centre in India. Monaldi Arch Chest Dis. 2020;90(4). doi:10.4081/monaldi.2020.1507
  71. Liu L, Zheng Y, Cai L, et al. Neutrophil-to-lymphocyte ratio, a criti­cal predictor for assessment of disease severity in patients with COVID-19. Int J Lab Hematol. 2020. doi:10.1111/ijlh.13374
  72. Mudatsir M, Fajar JK, Wulandari L, et al. Predictors of COVID-19 severity: A systematic review and meta-analysis. F1000Res. 2020;9:1107. doi:10.12688/f1000research.26186.2
  73. Vidali S, Morosetti D, Cossu E, et al. D-dimer as an indicator of prognosis in SARS-CoV-2 infection: A systematic review. ERJ Open Res. 2020;6(2):00260–2020. doi:10.1183/23120541.00260-2020
  74. Chen Z, Zhang F, Hu W, et al. Laboratory markers associated with COVID-19 progression in patients with or without comorbidity: A retrospective study. J Clin Lab Anal. 2021;35(1):e23644. doi:10.1002/jcla.23644
  75. Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. doi:10.1016/S2213-8587(20)30272-2
  76. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020. doi:10.1002/dmrr.3319
  77. Drucker DJ. Coronavirus infections and type 2 diabetes – shared pathways with therapeutic implications. Endocr Rev. 2020;41(3):bnaa011. doi:10.1210/endrev/bnaa011
  78. Chen Y, Wang J, Liu C, et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020;26:97. doi:10.1186/s10020-020-00230-x
  79. Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019;16(1):69. doi:10.1186/s12985-019-1182-0
  80. Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–328. doi:10.1016/j.chom.2020.02.001
  81. Wassenaar TM, Zou Y. 2019_nCoV/SARS-CoV-2: Rapid classification of betacoronaviruses and identification of Traditional Chinese Medicine as potential origin of zoonotic coronaviruses. Lett Appl Microbiol. 2020;70(5):342–348. doi:10.1111/lam.13285
  82. Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Rev. 2020. doi:10.1093/nsr/nwaa036
  83. Al Khatib HA, Benslimane FM, Elbashir IE, et al. Within-host diversity of SARS-CoV-2 in COVID-19 patients with variable disease severities. Front Cell Infect Microbiol. 2020;10:575613. doi:10.3389/fcimb.2020.575613
  84. Shikov AE, Barbitoff YA, Glotov AS, et al. Analysis of the spectrum of ACE2 variation suggests a possible influence of rare and common variants on susceptibility to COVID-19 and severity of outcome. Front Genet. 2020;11:551220. doi:10.3389/fgene.2020.551220
  85. Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97–109. doi:10.1016/j.antiviral.2014.06.013
  86. Majumdar P, Niyogi S. ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection. Epidemiol Infect. 2020;148:e262. doi:10.1017/S0950268820002599
  87. Ellinghaus D, Degenhardt F, Bujanda L, et al.; Severe Covid-19 GWAS Group. Genomewide Association study of severe COVID-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–1534. doi:10.1056/NEJMoa2020283
  88. Zhao J, Yang Y, Huang H, et al. Relationship between the ABO blood group and the COVID-19 susceptibility. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1150
  89. Zietz M, Zucker J, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death. medRxiv. 2020. doi:10.1101/2020.04.08.20058073
  90. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. doi:10.1056/NEJMsr2005760
  91. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clini­cally proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi:10.1016/j.cell.2020.02.052
  92. Muus C, Luecken MD, Eraslan G, et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020. doi:10.1101/2020.04.19.049254
  93. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithe­lial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e1019. doi:10.1016/j.cell.2020.04.035
  94. Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of genetic variants and gene expression in the susceptibi­lity and severity of COVID-19. Ann Lab Med. 2021;41(2):129–138. doi:10.3343/alm.2021.41.2.129
  95. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. doi:10.1186/s12916-020-01673-z
  96. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020. doi:10.1101/2020.01.26.919985
  97. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231–2232. doi:10.1093/gerona/glaa131
  98. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94(13):e00510–e00520. doi:10.1128/JVI.00510-20
  99. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi:10.1126/science.abd4570
  100. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi:10.1126/science.abd4585
  101. Kosuge M, Furusawa-Nishii E, Ito K, Saito Y, Ogasawara K. Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses. Sci Rep. 2020;10(1):17766. doi:10.1038/s41598-020-74843-x